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Abstract

Audio-Visual Scene-Aware Dialog (AVSD) is understood as
an extension of Visual Question Answering, the task of gen-
erating a textual answer in response to a textual question on
multi-media content. The input typically consists of text fea-
tures (either speech recognition output, or a summary describ-
ing the video contents), video features (object, scene, and/ or
action features), and dialog history or context. In this Eaper,
we describe our submission to the AVSD track of the 7*" Dia-
log State Tracking Challenge. We use hierarchical attention to
fuse contributions from different modalities, and investigate
transfer learning using a background corpus of 2,000 hours
of how-to videos. Our approach uses dialog context, but we
do not use dialog history explicitly. Our system achieves the
best performance in both automatic and human evaluations.

1 Introduction

The goal of the Audio-Visual Scene-Aware Dialog (AVSD)
task is to automatically answer questions about a visual
stream (i.e., videos or images). To do so, the algorithm needs
to take into consideration the visual modality and the textual
question to estimate the correct answer.

Motivated by the inherent multimodal integration that hu-
mans do, multiple language processing communities started
considering more than one modality in their approaches.
Some examples are (Palaskar, Sanabria, and Metze 2018) in
Automatic Speech Recognition (ASR), (Specia et al. 2016)
in Machine Translation (MT) and (Das et al. 2017) in Ques-
tion Answering. Specifically, in AVSD, multimodality plays
an important role because systems need to properly com-
bine all modalities (e.g., text, audio and video) to generate
correct and fluent responses, while integrating information
from all modalities. (Multi-modal) Sequence-to-Sequence
(S82S) models are conceptually very simple, yet they outper-
formed traditional approaches in many language processing
task such as QA (Lu et al. 2016) and MT (Specia et al. 2016).
S2S model offer a great variety of options to integrate mul-
timodal representation from different sources.

In this paper, we present Sinbad’s systems for the audiovi-
sual track of DSTC7 (Hori et al. 2017b; Alamri et al. 2018),
and an analysis of modality integration of different VQA
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Figure 1: Our best performing model use the weights of a
trained summarization model on the How2 dataset (left) to
initialize the training of our DTSC7 challenge model (right).

S2S models. It is important to note that we did not use any
ordering information provided in the challenge data (e.g., the
order in which the questions were presented), so one could
argue that our technical approach performs VQA rather than
“dialog” tracking. The most important finding of our ex-
periments is that multimodal integration (slighty) improves
VQA, and our results support five additional interesting find-
ings. First, hierarchical attention (Libovicky and Helcl 2017;
Hori et al. 2017a) is the best mechanism to combine modali-
ties. Second, visual features extracted from a 3-dimensional
version of the traditional ResNet-101 trained for action
recognition features are the most helpful representation for
the visual modality. Third, we are able to perform VQA
competitively by only providing the visual modality (i.e., no
text in the input). Fourth, by pretraining our model with a
different task (i.e., summarization) with a dataset from a dif-
ferent domain (i.e., instructional videos from YouTube) our
model slightly outperforms in-domain data-only models. Fi-
nally, automatic and manual rankings seem consistent for
our models, with a hierarchical attention model with three-
dimensional ResNet (Hara, Kataoka, and Satoh 2018) action
features being ranked best overall.

2 Models

Baseline The multimodal baseline for this work is the
Naive Fusion proposed in (Yu et al. 2016). Naive Fusion
combines all modalities with a projection matrix. This pro-
jection matrix maps a vector that contains all modalities con-
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Figure 2: Text-and-Video Dialog generation models with Hierarchical Attention.

catenated to a target dimension.

Video-RNN This model, detailed in (Libovicky et al.
2018), only uses video as input modality and use the same
architecture as in (Bahdanau, Cho, and Bengio 2014a). More
specifically, each frame of the video is represented as a vec-
tor and the sequence of vectors are fed into a bidirectional
RNN. Then, a decoder applies attention to the sequence of
encoded frame.

Hierarchical Attention For multimodal summarization
we follow the hierarchical attention approach (Hori et al.
2017a; Libovicky and Helcl 2017) to combine textual and
visual modalities. The model computes the context vector
independently for each of the input modalities. In the next
step, the context vectors are treated as hidden states of an-
other encoder and a new vector is computed. The hierarchi-
cal attention computation is shown in Figure 2. This type of
attention mechanism performed better for multimodal sum-
marization than a text-only model (Libovicky et al. 2018)
(see Section 4).

3 Related Work

First approaches on Image QA (IQA) were done in a very
limited environment and with unrealistic data (Geman et
al. 2015). Antol et al. proposed the first approach on IQA
in a real-world scenario (Antol et al. 2015). In (Antol et
al. 2015), the authors released a dataset where they col-
lected questions about images of realistic scenes. In addi-
tion, Antol et al. also proposed some IQA classification-
based baseline models. Inspired by (Bahdanau, Cho, and
Bengio 2014b), Xu et al. proposed to use attention for image
captioning. Attention allowed the model to focus dynami-
cally on different parts of the image (Xu et al. 2015). More
recently, Zhu et al. ported the idea on (Xu et al. 2015) and
applied spatial attention to a QA model (Zhu et al. 2016).
The main difference of the mentioned approaches and our
work is that we attend to multiple modalities while they only
focus on the image. Also, our visual stream is video-based
instead of image-based.

Yu et al. presented an approach to model dialog condi-
tioned on the video (Yu et al. 2016). In this case, their ap-
proach used concatenation to combine the different modali-
ties. In (Libovicky and Helcl 2017; ?), Libovicky and Helcl
and Hori et al. presented Hierarchical Attention, a tech-
nique explained in Section 2. Hierarchical Attention of-
fers a solution to attend to multiple modalities and com-
bine both modalities again with attention. This technique
obtained strong results in multimodal MT (Libovicky and
Helcl 2017), video description (Hori et al. 2017a) and video
summarization (Libovicky et al. 2018). Another approach to
jointly attend to multiple modalities is co-attention (Lu et
al. 2016).In this case, the co-attention mechanism performs
question-guided visual attention and image-guided question
attention. We will leave the co-attention model for future
work.

4 Experiments

To test the architectures explained in Section 2, we use
the implementations developed during the Jelinek Memorial
Summer Workshop 2018 (Caglayan et al. 2017). We evalu-
ate and compare our approaches with the baselines described
in Section 2 provided by the organizers of DTSC7!. For
training, validation and testing we use the subsets defined in
Table 1. The best-performing systems were evaluated by the
organizers using an undisclosed evaluation test set of 6745
questions and 1710 videos.

4.1 Data

In this work, we use two datasets. The first dataset, col-
lected by the DSTC7 organizers, is composed by crowd-
sourced dialogues conditioned on videos from the Cha-
rades3 dataset (Sigurdsson et al. 2016). The second one is
a recently released multimodal multitask dataset of instruc-
tional videos called How2 (Sanabria et al. 2018). Table 1
summarizes the amount of data for each dataset.

"https://github.com/dialogtekgeek/
AudioVisualSceneAwareDialog
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Figure 3: How2 dataset example with different modalities.
“Cuban breakfast” and “free online video” is not mentioned
in the transcript, and has to be derived from other sources.

Charades DSTC7 organizers crowdsourced human an-
notated questions, answers, captions, and summaries from
videos belonging to the Charades dataset (Sigurdsson et al.
2016). The original videos of this dataset contain untrimmed
and multi-action videos. In the DSTC7 dataset, each video
has ten questions and answers pairs. The dataset statistics
for training, validation, disclosed test and undisclosed eval-
uation test set are given in Table 1. More details about
the dataset collection are described in (Hori et al. 2017b;
Alamri et al. 2018; Sigurdsson et al. 2016).

How2 How?2 (Sanabria et al. 2018) is a large-scale dataset
of instructional videos. It covers a wide variety of topics
in 2,000 hours of clips. It provides word-level time align-
ments and the ground-truth English subtitles. It also pro-
vides human-generated summaries of the videos and crowd-
sourced Portuguese translations of the subtitles based on the
video. In this work, we will only use the subtitles, the sum-
maries, and the videos to train a summarization model to use
its weights to initialize the training of a VQA system.

Charades How?2
Split Sentences Videos Videos
train 76590 7659 73993
val 17870 1787 2965
test 7330 733 2156
held_out 6745 1710 169%*

Table 1: Dataset statistics for Charades and How?2. The num-
ber of videos in the held_out test set of How?2 is from the 300
hours subset of the data (*).

4.2 Multimodal Features

To fully exploit the information provided in the videos we
extract different representations from each modality. To do
so, we use DNNss trained for a particular task to extract their
internal representation. Based on empirical observations, we
know that pretrained DNNs capture specific characteristics
to solve a specific task. Therefore we use DNNs trained
for object recognition, place recognition, action recognition,
and audio event detection to extract a meaningful represen-

tation of the data. We hypothesize that each of this features
will capture information of the video that will be useful to
answer each question.

Object Features These features are an intermediate rep-
resentation of a CNN ResNet-50 trained with the ImageNet
dataset (Deng et al. 2009)?. ImageNet is a dataset for object
recognition with more than one million of images annotated
with one thousand classes.

Place Features (Nallapati et al. 2016) extract scene fea-
ture representations from a static image. In this case, the net-
work is trained to recognize scenes from an image. More
specifically, (Nallapati et al. 2016) trained the network with
Place365 dataset that contains 10 million images comprising
with more than 400 classes.

I3D Flow (Carreira and Zisserman 2017) are video fea-
tures extracted from an spatiotemporal CNN architecture
trained for action recognition. The network is trained to rec-
ognize 400 different human actions. (Carreira and Zisser-
man 2017) use a optical flow representation of the Kinetics
Human Action Video dataset that contains 400 samples for
class. We extract a 2048 dimensional representation from the
Mixed_5c layer.

I3D RGB 13D RGB is also a video feature from (Carreira
and Zisserman 2017) but instead of using optical flow, the
network uses video frames with three channels as the input
stream.

3D ResNeXt (Hara, Kataoka, and Satoh 2018) is a 3-
dimensional version of the traditional ResNet-101. The third
dimensionality of the convolution allows us to extract fea-
tures from the video instead of an image. The network, sim-
ilar I3D RGB and I3D Flow, is trained with the Kinetics Hu-
man Action Video dataset. From 3D ResNeXt, we extract a
2048 dimensional vector. These representations are shown
in Figure 2?.

VGGish (Hershey et al. 2017) are audio features that have
been extracted from a CNN to perform audio even detec-
tion network. The network architecture is inspired by the
traditional image classification network: VGG. This network
works with log Mel spectrograms features extracted from 16
KHz audio recordings. The network was trained with 70M
training videos (5.24 million hours) with a total of target
30,871 labels. We use a 128-dimensional embedding.

4.3 Transfer Learning with How2 Dataset

There are many common modalities between the Charades
dataset and the How2 dataset as described in Section 4.1.
To exploit this fact and increase the training data for this

https://github.com/KaimingHe/
deep-residual-networks



task, we first train models on the How2 data and then fine-
tune (FT) them on the Charades dataset. The pipeline and
respective input modalities are shown in Figure 1. The mod-
els trained on How?2 data use transcription of video (and/or
video features) in the input and generate an abstractive tex-
tual summary of the video in the output. The methods used
for training these are described in (Libovicky et al. 2018).
We initialize the training of a sequence-to-sequence model
for the Charades data with the weights of this learned model,
using summary+question (and/or video features) in the input
and generating the answer in the output. While fine-tuning,
we share the vocabulary for the two datasets and randomly
initialize words that do not occur in both.

Although the two datasets have the same modalities, there
are differences in the outputs. The main difference between
the two datasets is that the summaries of the How?2 dataset
(usually 2-3 sentences) follow a particular pattern or tem-
plate as described in (Sanabria et al. 2018), while the pattern
of answers (usually single sentence) in the DSTC7 dataset
are more stochastic. The input to the summarization model
is the video, that is longer in duration than the videos in the
Charades dataset and the transcript which. We will observe
the effects of these differences in Section 4.

4.4 Experimental Setup

In all our experiments, the text encoder consists of 2 bidi-
rectional layers of encoder with 256 Gated Recurrent Units
(GRU) (Cho et al. 2014) and 2 layers of decoder with
Conditional Gated Recurrent Units (CGRU) (Firat and Cho
2016). The models are optimized with an Adam Opti-
mizer (Kingma and Ba 2014) with learning rate 4 - 10~*
halved after each epoch when the validation performance
does not increase. We use separate vocabulary for source
and target text and restrict it to containing words that oc-
cur at least 5 times. We add 4 extra tokens for padding,
start, and end of sentence, and unknown words (‘pad’, ‘bos’,
‘eos’ and ‘unk’) to the dictionary. We restrict the maxi-
mum input length to 200 tokens. We train the model for 30
epochs but choose the checkpoint with the best performance
on ROUGE-L score on the validation data. For summariza-
tion models with How2 dataset, we follow the same training
regime as in (Libovicky et al. 2018). During fine-tuning, we
share the vocabulary of How?2 and Charades dataset, leading
to 30440 words in total.

Evaluation We evaluated our models using the metrics
and toolkit! proposed by the competition organizers. We re-
port the common natural language processing metrics like
BLEU (Papineni et al. 2002), METEOR (Denkowski and
Lavie 2014), ROUGE-L (Lin and Och 2004), and CIDEr
(Vedantam, Lawrence Zitnick, and Parikh 2015). In addition
to these objective evaluation metrics for this task, the orga-
nizers also evaluated some models on crowdsourced human
scores. The human evaluators were asked to score model
outputs based on how semantically, grammatically and fac-
tually correct the generated answers are.

4.5 Results

Table 2 presents our different models trained using Cha-
rades and How2 data, and using various modalities one at
a time (text-only, video-only) or together (text-and-video).
First, we report the baseline results using the model archi-
tecture and code-base provided by the competition organiz-
ers (Hori et al. 2018). We replicate their results using 13D
RGB, I3D Flow and VGGish features. To compare the per-
formance of different visual features, we use Objects, Places
and 3D ResNet in the baseline and observe similar or slightly
worse performance showing all features are equally rich rep-
resentations.

For text-only models (models 7 and 8), the input is a con-
catenation of summary of the video followed by the ques-
tion. The summary is repeated for every question following
the assumption that it has relevant input information for each
question. Further, we will see that improvements in the text-
and-video models over text-only models show that only us-
ing the summary in the input may not be sufficient and visual
features are useful in such scenarios. In the video-only mod-
els (models 9 and 10), we observe lower performance than
the text-only model as expected. It is interesting to note that
the video-only model is worse only by about 3-4 ROUGE-
L points than the text-only model showing the richness of
the visual features, 3D ResNet, here. In text-and-video mod-
els (models 11-15), we use Hierarchical attention for multi-
modal adaptation with different visual features. We observe
that 3D ResNet performs the best for adaptation models.

We fine-tune each of these models on summarization
models trained using the How2 data. In the text-only (model
8) and video-only (model 10) we see substantial gains us-
ing fine-tuning over models trained only on Charades data.
For the text-and-video model, the gains are not too high, and
further exploration of this behavior is needed.

Table 3 shows the 4 best models from Table 2 which
we submitted to the challenge. These were evaluated on the
undisclosed evaluation test set by the organizers. The base-
lines (model 1 and 2) are same as those in the previous table
but evaluated on the undisclosed test set. The trends we ob-
serve on the prototype test set are same as those observed on
the undisclosed test set. Additionally, this table also contains
the human evaluation scores. The evaluators were asked to
rate even the groundtruth references which scored 3.938.
Our best model scores 3.491 while the baseline scores 2.848.
This further shows that our models score well not only in
quantitative scores but also in qualitative scores.

S Qualitative Analysis

We perform certain qualitative analysis of the different mod-
els: text-only, video-only and text-and-video, each with fine-
tuning, to better understand the quality of the results and the
model behavior. We compute the number of unique words
in the answers generated by each of the three models. We
observe that multimodal fusion and fine-tuning with How2
both help increase the number of unique words. Another
metric we use is the average length of outputs (avg.). Fine-
tuning leads to longer outputs in text-only and video-only
models. These models also led to higher gains over Cha-



BLEU
Sr. No. Description BL-1 BL-2 BL-3 BL-4 METEOR ROUGE-L CIDEr

Input: Text and Video (different features), Model: Baseline (Hori et al. 2018)
1 Charades & 13D RGB

& 13D Flow 0.273 0.173 0.118 0.084 0.117 0.291 0.766
2 Charades & 13D RGB

& I3D Flow & VGGish 0.271 0.172 0.118 0.085 0.116 0.292 0.791
3 Charades & Objects 0.272 0.173 0.117 0.083 0.118 0.287 0.742
4 Charades & Places 0269 0.171 0.116 0.082 0.116 0.286 0.727
5 Charades & 3D ResNet 0.264 0.166 0.112 0.079 0.116 0.284 0.711
6 Charades & 3D ResNet

& Objects & Places 0.276 0.176 0.120 0.085 0.118 0.287 0.752

Input: Text Only, Model: S2S
7 Charades 0.297 0.200 0.142 0.105 0.138 0.330 1.079
8 How?2 FT Charades 0.311 0.212 0.152 0.114 0.146 0.337 1.169
Input: Video Only (3D ResNet features), Model: Video-RNN
9 Charades 0.264 0.170 0.118 0.085 0.116 0.294 0.804
10 How?2 FT Charades 0.279 0.179 0.122 0.086 0.122 0.300 0.833
Input: Text and Video (different features), Model: Hierarchical Attention

11 Charades & Objects 0274 0.179 0.125 0.091 0.121 0.301 0.876
12 Charades & Places 0.287 0.191 0.136 0.101 0.133 0.320 1.036
13 Charades & VGGish 0.303 0.206 0.148 0.110 0.144 0.338 1.150
14 Charades & 3D ResNet 0.306 0.209 0.150 0.112 0.144 0.338 1.161
15 How?2 FT Charades & 3D ResNet  0.307 0.210 0.151 0.113 0.145 0.339 1.180

Table 2: Automatic evaluation metrics on the test set provided by the organizers (groundtruth available). Models 1-6 are trained
using the methods described in (Hori et al. 2017b) with different modaltities. We treat them as our baselines. Models 7 and 8 are
trained on text-only, models 9 an 10 on video-only and models 11-15 on text-and-video. Models 8, 10 and 15 are first trained
on the How2 data and then fine-tuned F'T on the Charades data.

BLEU Human
ref. Table 2 Description BL-1 BL-2 BL-3 BL-4 METEOR ROUGE-L CIDEr Rating
Input: Text and Video (different features), Model: Baseline (Hori et al. 2018)
1 Charades & 13D RGB
& 13D Flow 0.621 0.480 0.379 0.305 0.217 0.481 0.733 -
2 Charades & 13D RGB
& I3D Flow & VGGish 0.626 0.485 0.383 0.309 0.215 0.487 0.746 2.848
Input: Text Only, Model: S2S
7 Charades * 0.692 0.555 0.447 0.364 0.254 0.543 1.006 -
8 How?2 FT Charades * 0.711 0.570 0461 0.376 0.264 0.554 1.076 3.394
Input: Text and Video (3D ResNet features), Model:Hierarchical Attention
9 Charades * 0.718 0.584 0478 0.394 0.267 0.563 1.094 3.491
15 How?2 FT Charades * 0.723 0.586 0476 0.387 0.266 0.564 1.087 3.459
- Groundtruth - - - - - - - 3.938

Table 3: Automatic and Human evaluation scores on the undisclosed evaluation test set prepared by DTSC7 organizers (we
do not have access to groundtruth). Models 1 and 2 are the same baselines as in Table 2. Models 3 and 4 are trained on text-only.
Models 5 and 6 are trained on text-and-video using Hierarchical attention. Models 4 and 6 are first trained on the How?2 data and
then fine-tuned FT on the Charades data. Systems marks with an asterisk (*) were the ones submitted to the challenge. Model
6 i.e. ‘How2 FT Charades’ was the best performing model. Note that the first column has a reference number to the model in
Table 2.



Sr. No. Model #unique Avg. output % sent. % sent changed
words length changed in content word
1 Text Only Charades 384 8.98 - -
2 Text Only How2 FT Charades 726 9.23 79.46% 65.30%
3 Video Only Charades 269 9.22 83.60% 72.35%
4 Video Only How2 F'T Charades 331 9.37 87.00% 74.91%
5 Text and Video Charades 488 8.95 76.37% 59.00%
6 Text and Video How2 FT Charades 740 8.98 77.72% 60.21%

Table 4: Qualitative evaluation of different systems. % sentences (sent) changed are with respect to text-only Charades model.

rades only models 2. Our final metric is the percentage (%)
of sentences changed in a given system when compared with
the text-only model trained only on Charades data. We com-
pute this metric by counting all tokens changed, as well as
by counting only content-based tokens, i.e. not counting stop
words or punctuation as changed. We see the maximum per-
centage of changed sentences are in the video-only models.
The difference percentage change by considering only con-
tent words is approximately 10-15% absolute.

6 Conclusions

In this paper, we present our submission to the Audio-
Visual Scene-Aware Dialog (AVSD) track of the 7th Dia-
log State Tracking Challenge (DSTC7). Our final submis-
sion achieved the best performance in both human (mean
opinion score) and automatic (BLEU, ROUGE, METEOR,
and CIDEr) evaluation metrics.

We cast the task as a multi-modal video summariza-
tion problem, in which the input is given by video fea-
tures as well as text context concatenated with the ques-
tion, while the summary provides the desired “answer”. We
applied hierarchical attention to fuse contributions of the
text and image modalities, using an nmtpytorch imple-
mentation, which provided small improvements over the
baseline. We experimented with additional visual features,
which again slightly improved performance over the pro-
vided ones. However, we did not achieve significant im-
provements by pre-training our model on a large corpus of
2,000 hours of how-to videos at this time.

We are currently performing more analysis to understand
the capabilities of this model better, document the behavior
at different operating points, and extend it to tasks such as
identifying and describing differences in videos.
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