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Defination
Non-Negative Matrix Factorization(NMF) is an Linear Dimensionality
Reduction(LDR) technique where given a non-negative matrix, we
find the non-negative factors of it i.e

X ≈WH (1)

with focus on the following optimization problem

min
W∈Rp×r ,H∈Rr×n

‖X−WH‖2
F 3W ≥ 0,H ≥ 0 (2)
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Application of NMF in Speech

Decomposing the audio which is a mixture of more than one
musical instrument into its building blocks [1].
NMF is also used for denoising of audio.

Figure: Decomposition of audio into its constituent instruments
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Hyper spectral Unmixing

The goal of blind hyperspectral unmixing is first to identify the
endmembers i.e constitutive materials and which pixel contain
which endmember and in which proportion.
NMF is able to compute the spectral signature of the
endmembers and simultaneously the abundance of each
endmember in each pixel.

Figure: Decomposition of urban hyperspectral image
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Two Block Coordinate Descent-Framework of most NMF
Update alternatively over one of the two factors, W or H while
keeping the other fixed. The reason is that the subproblem in one
factor is convex or precisely nonnegative least square
problem(NNLS).

Algorithm 1: Two Block Coordinate Descent
Input: Input nonnegative matrix X ∈ Rp×r and factorization rank r
Output: (W,H)≥ 0: A rank-r NMF of X ≈WH
Initialization: Generate some initial matrices W (0) ≥ 0 and
H(0) ≥ 0

for t=1,2,... do
end
W(t) = update(X ,H(t−1),W (t−1))

H(t) = update(X ,W (t)T
,W (t−1)T

)

Non-Negative Matrix Factorization. 5 / 14



Problem Statement
The Why: Applications

The How: Standard Algorithms
References

Multiplicative Updates
HALS
Comparison

Alternating Least Squares(ALS)

Solving unconstrained least square problem ||X−WH||2F and then
project the solution onto nonnegative orthant:

W ←− max(argminZ∈Rpxr (||X − ZH||F ,0) (3)

Drawback
ALS does not converge and might oscillate under ALS updates.

Alternating Nonnegative Least Squares(ANLS)

Solve the subproblem exactly, i.e

W ←− (argminW≥0(||X −WH||F ) (4)

Drawback
Each iteration of CD is computationally expensive.
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Multiplicative updates

For minimising ||V −WH||F , at each iteration, update H and W as [2]

Hαµ ←− Hαµ
(W T V )αµ
(W T WH)αµ

Wia ←−Wia
(VHT )ia

(WHHT )ia

Clearly, when V = WH, the updates are stationary.
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Interpretation/Intuition

Consider a simple additive update for minimising 1
2 ||V −WH||2F w.r.t

H, using gradient descent

Hαµ ←− Hαµ + ηαµ[(W T V )αµ − (W T WH)αµ].

This becomes equivalent to the multiplicative updates for

ηαµ =
Hαµ

(W T WH)αµ
.
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Proof of Convergence

Auxiliary function
G(h, h′) is an auxiliary function for f (h) if G(h, h′) ≥ F (h) and
G(h, h) = F (h).

If G is an auxiliary function for F , then F is non increasing under
the update ht+1 = argminh G(h,ht).
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Proof of Convergence

Figure: Auxiliary function
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Proof of Convergence

Since, ||V −WH||2F =
∑

j ||Vj −WHj ||22, for a fixed column v of V and
corresponding column h of H, we consider the objective function

F (h) =
1
2

∑
i

(vi −
∑

a

Wiaha)
2.

It can be shown that the following is an auxiliary function

G(h,ht) = F (ht) + (h − ht)T∇F (ht) +
1
2
(h − ht)T K (ht)(h − ht),

where Kab(ht) = δab(W T Wht)a/ht
a.

Non-Negative Matrix Factorization. 11 / 14



Problem Statement
The Why: Applications

The How: Standard Algorithms
References

Multiplicative Updates
HALS
Comparison

Hierarchical Alternating Least Squares(HALS)

Exact coordinate descent method, updating one column of W at a
time.

W (:, l)←− argminW (:,l)≥0||V−
∑
k 6=l

W (:, k)H(k , :)−W (:, l)H(l , :)||F (5)

= max

(
0,

VH(l , :)T −
∑

k 6=l W (:, k)(H(k , :)H(l , :))T

||H(l , :)||22

)
(6)

Key Points

Converges faster than Multiplicative Updates.
Almost the same computational cost.
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Comparison

Figure: [3] Comparison
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