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Abstract

Linear dimensionality reduction techniques such as principal component analysis and
singular value decomposition are powerful tools for dealing with high dimensional data.
In this report, we will explore a linear dimensionality reduction technique namely Non
negative matrix factorization, a low rank approximation problem which is quite useful
while dealing with data in which all entries are non negative, for eg., spectrogram matrix
entries or pixels in an image. More precisely, we seek to approximate a given non negative
matrix as a product of two low-rank non negative matrices. In this report we will embark
on the journey to explore the theoretical complexity associated with this problem, then
how to find the non negative factors of our main protagonist and what all applications
are there we can use this non negative matrix factorisation.

Linear Dimensionality Reduction, Principal Component Analysis, Singular Value Decompo-
sition, Non-Negative matrix Factorisation, Applications, Algorithms

1 Introduction

Non Negative Matrix Factorization(NMF) is a useful Linear Dimensionality Re-
duction Technique(LDR) for non-negative data, and is widely used tool for compression,
visualisation, feature selection and noise filtering. So the idea of NMF is to decompose a given
non-negative matrix X into factors W and H which are elementwise nonnegative, i.e

X ≈WH (1)

The problem can be interpreted as follows.

• Each column of the matrix X ∈ Rp×n is a data point, that is X(:, j) = xj for 1 ≤ j ≤ n.

• Each column of the matrix W ∈ Rp×r is a basis element, that is W (:, k) = wk for
1 ≤ k ≤ r,and

• Each column of the matrix H ∈ Rr×n gives the coordinates of data point X(:, j) in the
basis W , that is, H(:, j) = hj and xj = Whj for 1 ≤ j ≤ n.

NMF was introduced in 1994 by Paatero and Tapper [7] and started to be extensively
studied after the publication of an article by Lee and Seung [6] in 1999. Following that, it
has been used extensively in various machine learning applications like music analysis, graph
clustering, food quality and safety analysis.

An important feature of NMF is that its nonnegativity constraints typically induce sparse
vectors. More formally, the reason for this behavior is that stationary point (U, V ) of NMF will
typically be located at the boundary of the feasible domain Rp×r×Rr×n, and hence will feature
zero components. Sparsity of the factors is an important consideration in practice: in addition
to reducing memory requirements to store the basis elements and their weights, sparsity
improves interpretation of the factors, especially when dealing with classification/clustering
problems e.g., in text mining and computational biology. By contrast, unconstrained low rank
approximations such as PCA do not naturally generate sparse factors.
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But these advantages of NMF over PCA come at a certain price. First, because of the
additional non-negativity constraints, the approximation error of the input data for a given
factorization rank r will always be higher for NMF than in unconstrained case. Second, the
optimization problem for NMF is more difficult to solve than its unconstrained counterpart:
while PCA problems can be solved in polynomial time, NMF problems belong to the class of
NP-hard problems.

The rest of the report is organized as follows. Sec.2 will mainly discuss posing the NMF as
an optimization problem, the corresponding cost function involved and the problem in solving
that function. Than in Sec.3, we will discuss algorithms to compute the desired factors. We
mainly discuss two widely used algorithm for the calculation of the factors. In Sec.4, we will
discuss the two major applications of NMF, one from speech domain and one from image
processing domain.

2 Problem Statement

2.1 Cost Function

The key aspect of any LDR technique is the choice of the measure to assess the quality of
the approximation and it should be chosen depending on the noise model. In this report we
mainly talk about the following optimization problem:

min
W∈Rp×r,H∈Rr×n

‖X−WH‖2F 3W ≥ 0,H ≥ 0 (2)

assuming that the noise present in the data is a Gaussian noise. As mentioned, unlike other
LDR techniques, NMF induces sparse vectors, but because of that, there are many issues
associated with the NMF. Here, we will mainly talk about 3 major issues.

• NMF is NP-hard Vavasis in [8], explores the computational complexity of the NMF
optimization problem, specifically stating that exact NMF is NP-hard. In order to
prove that, Vavasis introduces the following problem, called the Intermediate Simplex
(IS) problem.

– Given a bounded polyhedron

P = {x ∈ Rr−1 | 0 ≤ f(x) = Cx+ d} (3)

where C ∈ Rn×(r−1), d ∈ Rn, [C, d] ∈ Rn×r has rank r, and given a set S ⊂ P
of p points in P not contained in any hyperplane, determine r points in P whose
convex hull T contains S, i.e a polytope T with r vertices such that S ⊆ T ⊆ P ,
or determine that such a solution does not exist, if that is the case.

P is refered to as the outer simplex, conv(S) as the inner simplex, and T as the inter-
mediate simplex.
It has been proved that there exists a polynomial time reduction from exact NMF to IS
and vice versa, and therefore IS is NP-hard.
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• NMF is ill-posed NMF factorisation does not produce a unique solution, i.e, given an
NMF (W,H) of X, there usually exist equivalent NMF’s (W ′, H ′) with W ′H

′=WH . This
can easily be seen to occur by using any monomial matrix Q and letting W ′ = WQ
and H ′ = Q−1H. However, the problem occurs if this happens for a non monomial
matrix Q, since that changes the problem specific interpretation of W as a basis. For
example[4], when NMF being applied in text mining, this would lead to different topics
and classifications [3].

• Choice of r The choice of factorization rank r is the most important and tricky in
NMF. Some approaches are trial and error, estimation using the SVD and the use of
expert insights.

3 Algorithms

3.1 Alternating Nonnegative Least Square (ANLS)

Although NMF is a non convex and difficult problem, it is convex separately in each of the
two factors W and H. More precisely, this convex problem corresponds to a non negative
least square(NNLS) problem, i.e, a least squares problem with nonnegativity constraints. This
problem can be decomposed into p independent NNLS in r variables

||X −WH||2F =

p∑
i=1

||Xi: −Wi:H||2 (4)

which make this problem easier to solve. The so-called alternating least square(ANLS) al-
gorithm for NMF minimizes the cost function alternatively over factors W and H so that a
stationary point of NMF is obtained in the limit.

Algorithm 1 Alternating Least Square

Input: Data matrix X ∈ Rp×n
Initialization: Generate some initial matrices W (0) ≥ 0 and H(0) ≥ 0
while Stopping Criteria not satisfied do

W ←− (argminW≥0(||X −WH||F ) (5)

H ←− (argminH≥0(||X −WH||F ) (6)

end

3.1.1 Convergence

ANLS is guaranteed to converge to a stationary point. Since each iteration of ANLS computes
an optimal solution of NNLS sub problem, each iteration of ANLS decreases the error the most
among NMF algorithms. However, each iteration is computationally expensive and difficult
to implement, since the problem solved in each iteration is a constrained problem.
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3.2 Multiplicative updates

In the previous algorithm, each step consisted of solving a constrained minimization problem.
For this reason, each step in ANLS is computationally expensive. Also ALS is not guaranteed
to converge. To overcome these disadvantages, [6] proposed iterative algorithms involving
multiplicative updates at each step. Each step is simple and is guaranteed to reduce the ob-
jective function. Different multiplicative updates have been proposed for different objective
functions.

For the problem of minimizing ||X −WH||2F , the squared Frobenius norm, the following
multiplicative updates can be used.

Hαµ ←− Hαµ
(W TX)αµ

(W TWH)αµ
,

Wia ←−Wia
(XHT )ia

(WHHT )ia
.

For the problem of minimizing D(X||WH), where

D(A||B) =
∑
ij

(
Aij log

Aij
Bij
−Aij +Bij

)
,

the multiplicative updates considered are

Hαµ ←− Hαµ

∑
iWiaXiµ/(WH)iµ∑

kWka

Wia ←−Wia

∑
µHaµXiµ/(WH)iµ∑

ν Haν

The measure D(A||B) is analogous to the Kullback-Leibler divergence between probability
distributions and reduces to it when A and B considered are probability distributions, ie.,
when

∑
ij Aij =

∑
ij Bij = 1. In further discussions of convergence etc., we consider the

Frobenius norm as the objective function.
It is clear from the update equations that at the optimum, if X = WH, then the updates

don’t change H or W . So, the optimal solution is a fixed point of the updates.

These updates can be shown to reduce the objective function at every step. Since the
objective is bounded below, the algorithm is guaranteed to converge.

3.2.1 Intuition

Consider the problem of minimizing 1
2 ||X−WH||2F w.r.t H iteratively using gradient descent

updates. The gradient of the objective w.r.t H is given by W TWH −W TX. This can be
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seen by expanding the objective function as the sum 1
2

∑
j ||Xj −WHj ||22, where Xj and Hj

are the j’th columns of X and H respectively. So the update becomes

Hαµ ←− Hαµ + ηαµ
[
(W TX)αµ − (W TWH)αµ

]
.

If all ηαµ are chosen to be equal, then this becomes the standard gradient descent update.
Furthermore, if the chosen value is sufficiently small at each step, then the objective function
will decrease. However, the optimal choice of ηαµ is not clear. It can be seen that choosing

ηαµ =
Hαµ

(W TWH)αµ

gives the multiplicative updates proposed for minimizing ||X −WH||2F . However, the ηαµ
are not chosen equal here, but diagonally rescaled and are also not guaranteed to be small.
Hence, it is not directly clear if this choice will result in a decrease in the objective function.

3.2.2 Convergence

The convergence analysis of this algorithm actually gives the reason why the updates were
chosen in this particular way.

The basic idea is to construct an ’auxiliary’ function, which upper bounds the objective
function, and to minimize the auxiliary function. The auxiliary function is chosen in such a
way that this step is simple. This will result in a decrease in the objective function as well
by a simple update which does not require minimizing the objective directly. The idea is
formalised as follows.

Definition 3.1. G(h, h′) is an auxiliary function for F (h) if ∀h, h′, G(h, h′) ≥ F (h) and
G(h, h) = F (h)

Lemma 3.0.1. If G is an auxiliary function for F , and h is updated as

ht+1 = arg min
h

G(h, ht),

then F (ht+1) ≤ F (ht).

Proof.

F (ht+1) ≤ G(ht+1, ht) (by the definition of G)

≤ G(ht, ht) (by the definition of ht+1)

= F (ht) (by the definition of G)
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Figure 1: Auxiliary function [6]

Now, we need to define an appropriate auxiliary function for the current objective function.
It can be shown [6] that for the function F (h) = 1

2 ||x −Wh||22, the following function is an
auxiliary function.

G(h, h′) = F (h, h′) + (h− h′)T∇F (h′) +
1

2
(h− h′)TK(h′)(h− h′)

where K(h′) is the diagonal matrix given by Kab(h
′) = δab(W

TWh′)a/h
′
a.

This function is a convex quadratic function in h and hence can be minimized directly as
h − h′ = −K(h′)∇F (h′). Substituting h′ = ht and h = ht+1 and the expressions for K and
the gradient gives the multiplicative updates expression.

3.3 Hierarchical alternating Least Squares

All the previous algorithms have split the variables into two blocks corresponding to W and
H and update each block separately at each step. The blocks can further be divided and the
updates could be done column wise [1]. Considering the problem only in terms of W (the
update of H is analogous), we can rewrite the objective function as

||X −WH||2F = ||X −
∑
k

W (:, k)H(k, :)||2F

= ||X −
∑
k 6=l

W (:, k)H(k, :)−W (:, l)H(l, :)||

This problem can be solved exactly in terms of W (:, l)H(l, :) and the update becomes

W (:, l)←− arg min
W (:,l)≥0

||X −
∑
k 6=l

W (:, k)H(k, :)−W (:, l)H(l, :)||F

= max

(
0,
XH(l, :)T −

∑
k 6=lW (:, k)H(k, :)H(l, :)T

||H(l, :)||22

)
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Figure 2: Plot showing variation of endmembers v/s wavelength,where 3 endmembers are
taken for analysis.

(a) Clusters or endmembers(3 endmembers) (b) Abundance Maps(for 3 endmembers)

Figure 3: Hyperspectral image output

Clearly, these updates are computationally relatively inexpensive, just like multiplicative
updates. Furthermore, it is seen to converge better in practice.

4 Application

4.1 Hyperspectral Data Analysis

A hyperspectral image is a set of images of the same object or scene taken at different wave-
lengths. Each image is acquired by measuring the reflectance of each individual pixel at a
given wavelength. The main aspect of hyperspectral image analysis is the identification of
materials present in the scene being imaged. The model that we will assume is a linear mix-
ing model i.e the spectral signature of each pixel is nothing but the linear combination of the
spectral signature of its constituent elements (endmembers).

The matrix X is constructed as follows: each 2D image corresponding to a wavelength is
vectorized and is a row Xi:,while each column X:j corresponds to the spectral signature of
the corresponding pixel. So the problem can simply be stated as:

X:j ≈WH:j ∀j, (7)

ie, each pixel is to be obtained as a linear combination of columns of W , each of which
correspond to an endmember.

Fig. 2 shows the results from using NMF to cluster[5] pixels into three regions corre-
sponding to three different endmembers. The code used to create this was obtained from
https://sites.google.com/site/nicolasgillis/code.
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Figure 4: (a) Spectrogram representing an excerpt of the 1964 recording of ’I Got You’ by
James Brown and The Famous Flames, which is a mixture of a percussive and a melodic
instrument. We can see the high concentration of energy in some frames and also a constant
energy distributed throughout. (b) Spectrogram of the percussive instrument (drums). (c)
Spectrogram of the melodic instrument (Anglo saxophone).

4.1.1 High dimensional images

Using these standard methods directly on large data such as high dimensional images of the
Earth’s surface (such as in https://aviris.jpl.nasa.gov/data/get aviris data.html) may pose
problems with regards to memory space requirements etc. One heuristic for working past this
is to divide the matrix into sufficiently small blocks and iteratively solve the problem on each
of the blocks, as in https://github.com/Gururajk/Block NMF.

4.2 Harmonic Percussive Source Separation

The general goal of music source separation is to decompose a recording into its constituent
signal components, for example a percussive component and a melodic component. [2] uses
a two-stage approach, unifying local and global methods. In the first stage, Kernel Addi-
tive Methods(KAM) were used to find initial separation and estimates of the percussive and
harmonic parts. In the second stage, these parts are combined and further refined using NMF.

4.2.1 Implementation Details

We take the single channel audio which is the mixture of percussive and melodic instruments,
and then apply Short Time Fourier Transform(STFT) with block size of 2048 samples and
a hop size of 512 samples(75% overlap). Further computations are applied on the absolute
magnitude of the STFT output. Then, KAM filtering is applied, which is a local estimate,
in the sense that, based on each time-frequency bin, this algorithm will classify whether that

9



bin belongs to the percussive or the melodic portion. These estimates are used as an input
to an NMF algorithm, which further refines them to obtain a better separation between the
two components.
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