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ABSTRACT

Decoding of the auditory brain for an acoustic stimulus involves
finding the relationship between the audio input and the brain activ-
ity measured in terms of Electroencephalography (EEG) recordings.
Prior methods in this domain focus on analysing a subjects’ activity
separately using linear analysis methods like Canonical Correlation
Analysis (CCA) and non-linear methods like Deep CCA. A recent
attempt was made, called multiway CCA, to combine the brain ac-
tivity readings from a bunch of subjects and extract useful informa-
tion from each subject which is irrespective of the subject to obtain a
large dataset of stimulus and response to work with. In this project,
we tried to introduce a deep learning framework to perform correla-
tion analysis in this setup. We try to replace the block of multiway
CCA, which is one linear formulation of a Generalized Canonical
Correlation Analysis with a deep version of Generalized CCA. The
corresponding results obtained in performing the existing multiway
CCA method onto the data and the comparison of the correlations
obtained for each subject with and without the influence of other
subjects’ data are presented.

1. CANONICAL CORRELATION ANALYSIS

1.1. Linear CCA

For a pair of multi-variate datasets, Canonical Correlation Anal-
ysis (CCA) [1] solves the problem of finding the optimal linear
transforms that maximize the Pearson correlation between the trans-
formed vectors.

Let x and y denoteD1 andD2 dimensional vectors respectively.
Let n denote the dimension of the canonical sub-space where the
correlation between transformed vectors is maximal. For example,
if n = 1, let u1, v1 denote the pair of vectors which project x and
y respectively into 1-dimensional space. Now, the problem is to find
u1 and v1 such that the correlation, ρ, between x ′ = u1

Tx and
y ′ = v1

Ty is maximized. The problem can be equivalently given
as to maximize,

ρ =
u1

TCxyv1√
u1
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where, Cxy = E[(x−µx)(y−µy)T ] and Cxx, Cyy are the auto-
correlation matrices of x, y respectively.

Let T , C
−1/2
xx CxyC

−1/2
yy . Then, the solution to the CCA

problem (u∗1 and v∗1 ) are given as the first left and right singular
vectors of the T matrix and the maximum correlation is the top sin-
gular value [2]. This can be extended for n > 1 also by finding the
subsequent singular vectors.

1.2. Linear Multiway Correlation Analysis

The goal of MCCA [3],will be to find dimensions in multi variant
data that maximize the correlation between the multiple data sets.

Consider the data in the lth set with xl
i ∈ Rdl ,where i=1,...,T

enumerates exemplars,l=1,...,N enumerated the dataset,and dl are the
dimension of each data set.Where the dimensions D=

∑N
i=1 dl,will

be for total of N dataset.The goal is to identify on each dataset a
projection vector vl ∈ Rd

l such that inter-set correlation(ISC), is
maximized.The problem can be equivalently given as to maximize .
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where Rlk are the cross covariance matrices between xl
i and xki :

Rlk =

T∑
i=1

(xli − xl∗)(xli − xl∗)T (3)

where xl∗ = T−1∑T
i=1 x

l
i,is the sample mean for the data set l.

1.3. Deep MCCA

The extension of the linear transformation based CCA analysis to
deep transformation learning based CCA was first proposed by An-
drew et.al [2]. Two input sets of vectors are passed through a pair
of feed-forward connections to undergo a set of non-linear transfor-
mations. The outputs of each network are the final representations
on which the cross correlation is computed. The neural network is
trained to maximize the correlation cost.

Let the non-linear transform performed by the first neural net-
work on x be denoted as f1(·). Similarly, let the second network
transformation on y be denoted as f2(·). Let θ1 be the set of all
trainable parameters of the first neural network and θ2 be that of the
second network. The deep CCA optimization can be given as,

(θ∗1 ,θ
∗
2) = argmax

(θ1,θ2)

corr (f1 (x;θ1) , f2 (y;θ2)) (4)

Now, we tried to push the deep CCA method in the traits of
linear MCCA [3]. The deep version formulation of the generalized
CCA is adopted from [4]. In the paper, the linear Generalized CCA
formulation of finding the shared representation (say G) of J different
views Xj and Uj is the transform for jth view is as follows :

min
Uj∈R

dj×r
,G∈Rr×N

∥∥∥G− UT
j Xj

∥∥∥2
F

subject to GGT = Ir (5)

And the deep version of the Generalized Canonical Correlation
Analysis i.e., DGCCA formulation is as follows :



Fig. 1. The J different views provided to the DGCCA block which
finds the final representations are processed EEG, collected from the
J − 1 subjects and 1 view which represents the processed audio
stimuli which is common to all the subjects.

min
Uj∈R
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F

subject to GGT = Ir

(6)

If we denoted the fj(·) as the nonlinear transformation of the
jth neural network, then we can see that the representations Xj are
replaced by the final representations obtained by passing jth view
through the jth neural network. It is same as GCCA equation where
G ∈ Rr×N is the shared representation we are interested in learning.

The work in [4] showed that the DGCCA learned a nonlinear
mapping that does remarkably well at making a mixture previously
linearly non-separable mixture components into a linearly separable
mixture. Results also show improvements in phoneme classification
when acoustic and articulatory data as the two views and phoneme
labels as the third view for GCCA and DGCCA.

In our work, we have followed the architecture of [2] used for
finding the representations of the left and right halves of MNIST
hand-written digit images such that the correlation between them is
maximized. [2] has shown that the correlation can be increased sig-
nificantly by using the deep CCA model over the linear CCA model.

In this work, we have tried to generalize the goal of obtaining
better representations of a subject’s EEG and the auditory stimulus
which was previously tried to capture using DCCA accessing each
subject’s data separately. We combine the EEG data of all the sub-
jects and the common stimulus to find representations for all subjects
such that the common signals from each subject corresponding to the
stimulus is obtained, taking the advantage of having more data from
different subjects.

The main goal is to solve the problem of not having a lot of
EEG data from a single subject by tapping the EEG available from
many subjects, by finding the subject-independent/signals-common-
across-subjects representations using the DGCCA formulation.

2. EXPERIMENTS AND RESULTS

The linear MCCA analysis performed in [3] forms the baseline for
this work. We use the same stimuli response data collected by Lib-
erto et. al. [5]. Specifically, the EEG recordings from 128 channels
are recorded when subjects are listening to a male speaker reading
snippets of a novel. A Biosemi system was used for EEG data col-
lection which was sampled at 512 Hz. We use 20 speech excerpts,
each of duration approximately 3 minutes presented diotically via

Table 1. Linear MCCA used for De-noising matrix

Users Linear CCA3 MCCA(no stimulus) MCCA(stimulus view)
User 1 0.22 0.23 0.23
User 2 0.25 0.25 0.26
User 3 0.16 0.10 0.15
User 4 0.29 0.3 0.31
User 5 0.32 0.28 0.32
User 6 0.31 0.29 0.32

headphones. The EEG data were down-sampled to 64 Hz. It was
further processed using de-trending and de-noising using noise tools
software [6]. The data were processed with band-pass filtering be-
tween 0.1 − 12 Hz. The stimulus data was obtained from audio
sampled at 44100 Hz. The audio envelope was obtained by a squar-
ing and smoothing operation by convolution with a square window
and downsampled to 64 Hz. The envelope was further compressed
to the power 1/3. In all our experiments, we perform DCCA projec-
tion to one dimension and compare with the linear CCA projection
to one dimension. More details about the EEG pre-processing and
the audio envelope extraction are described in De Chevigne [7].

We have tested the linear MCCA and the Deep GCCA on the
prepocessed EEG collected from 6 subjects.

The linear part is done as : In linear MCCA part,MCCA has been
used to obtain the denoising matrix and than that denoising matrix
has been applied to CCA. The main idea was that each data matrix
Xn may be denoised by projecting it to the overcomplete basis of
Canonical correlates,selecting the first m ¡ D components,and than
projecting back.This is refer as ”denoising”,as it can be used to atten-
uate the components that are least shared across subjects,likely to be
the noise.This can be summarized by a denoising matrix Dn product
of the first ’m’ columns of subject specific projection matrix Vn,by
the first ’m’ rows of its pseudo inverse. The thing we tried to do is
in calculation of denoising matrix,considered the stimulus response
as one of the view and try to estimate the denoising matrix than.The
parameters are important while doing this,i.e 30 PCs are kept in the
first PCA,resulting in 128*280 analysis matrix(6 for users and last
40 are stimulus matrix providing 40 delay to it).Than the first 50
columns of this matrix were multiplied by the first 50 rows of its
pseudo inverse to yield a 128*128 subject specific denoising matrix.
Results can been seen in table 1.

The deep GCCA is tested as follows : All the subjects’ EEG data
is sent through a a filter-bank of 21 FIR band-pass filters whose char-
acteristics like centre frequency, bandwidth and duration of impulse
response are uniformly distributed on a logarithmic scale, separately
for each subject.The 21 D output of the audio envelope after passing
through the filter-bank is used as the representation from the stimulus
side, which is common for all the subjects. The 60 D PCA output of
the original 128 channel EEG through the 21 filter filter-bank gives
1260 dimensional response for each subject. This high dimensional
vector is processed with another PCA transformation to 139 dimen-
sional output for each subject separately. Now, the six EEG response
views of the 6 subjects plus 1 stimulus view, combined together as
7 different views of the same data is provided to the corresponding
number of different neural networks such that a new representation
for each view is obtained using the DGCCA.

The configuration of the DGCCA block that is tested in this
work is shown in Fig. 1.

The deep architecture we used [2] contains two hidden layer net-
work, for each view, with the first hidden layer having 2038 units
and the second layer having 1608 units followed by a one dimen-



0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

−0.1

0.0

0.1

0.2

0.3

Fig. 2. Results of the DGCCA for different subjects.
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Fig. 3. Results of the DGCCA performed for one subject for differ-
ent dropouts value of 5%, 10%, 20%.

sional output layer. We use the leaky ReLU activation function at
the output [8]. We also incorporate dropout regularization [9, 10]
in the deep CCA model training to avoid over-fitting in the noisy
conditions. With varying amounts of dropout regularization.

Each subject had 20 sessions with approximately 160 seconds
of audio recording in each session. All the results are obtained for
20 fold validation experiments in which one of the sessions is held
out as the test data while the 19 other sessions are used in training
the model (both the linear models as well as the DCCA models). For
the models training, this set of training instances were further split
randomly into training and validation with a 90 − 10 split for each
subject and the common stimulus.

The results for each subject for each of the 20 cross validation
folds when performed DGCCA is compared to the correlation val-
ues obtained for the final representations obtained for each subject
separately without the influence of the other subjects’ data. The plot
which shows the corresponding comparision is shown in the 2

3. SUMMARY

In this project, we tried to marry the DGCCA and multiway CCA
models for decoding the auditory EEG activity which were intro-
duced in two different literature works separately. It is not evident
that the marriage is successful but we feel that there is still scope for
a lot of hyperparameters tuning, to make it work out. The DGCCA
model performs a non-linear mapping of the responses of all sub-
jects and the common stimulus where the correlation is maximized.
We still need to experiment several configurations of the deep CCA
model. In summary, this work shows that there is still a lot scope
for experimenting the replacement of the linear MCCA module with
a deep version of it to constitute as a useful method for analyzing
complex relationships between stimulus and EEG recordings.
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